Electronics Era

  • About Us
  • Advertise with Us
  • Contact Us
  • e-Mag
  • Webinars
Header logo on website
Advertisement
Advertisement
Menu
  • News
    • Industry News
    • Product News
  • TECH ROOM
    • Sensor
    • VR / AR
    • Embedded
    • Medical Electronics
    • Industry 4.0
    • Robotic
    • Automation
    • Smart Machine
    • Component
    • Manufacturing
    • Aerospace & Defence
    • Security
    • Policy
  • Semiconductor
    • AUTOMOTIVE ELECTRONICS
      • EVs
      • HEVs
      • ADAS
      • Connected Cars
    • IoT-Internet of Things
      • Development Kit
      • IoT Design
    • Power Electronics
      • AC-DC/DC-DC Converters
      • Mosfets
      • IGBTs
      • LEDs
  • T & M
    • 5G testing
    • Oscilloscopes
    • SDN & NFV
    • RF & Wireless
  • AI/ML
  • Telecom
    • 5G/6G
  • RENEWABLES
    • Sustainability
  • Future Tech
    • Data Center
    • Cloud Computing
    • Big Data Analytics
  • Webinars
  • Editor’s Pick
    • Tech Article
    • Tech Blog
    • White Papers
    • EE-Tech Talk
    • Market Research
  • EE Awards
    • EE Awards 2025
    • EE Awards 2024
  • MORE
    • E-Mag
    • Events
    • Subscription
    • Contact Us
Home Semiconductor

Navitas Semiconductor Announced 650 V Bi-directional GaNFast ICs and High-Speed Isolated Gate-Drivers

Bi-Directional GaNFast™ plus new IsoFast™ drivers enable advanced ‘single-stage’ topologies to further enhance efficiency, power density, and performance in AC-DC and AC-AC conversion.

Editorial by Editorial
March 14, 2025
in Semiconductor
Reading Time: 3 mins read
NAVITAS
Share on FacebookShare on TwitterShare on LinkedIn

TORRANCE, CA – Navitas Semiconductor has announced a latest breakthrough of the world’s first production-released 650 V bi-directional GaNFast ICs and high-speed isolated gate-drivers, creating a paradigm shift in power with single-stage BDS converters, which enables the transition from two-stage to single-stage topologies. Targeted applications range widely and opens up multi-billion dollar market opportunities across EV charging (On-Board Chargers (OBC) and roadside), solar inverters, energy storage and motor drives. The recorded launch event video can be viewed here.

Over 70% of today’s high-voltage power converters use a ‘two-stage’ topology. For example, a typical AC-DC EV OBC implements an initial power-factor-correction (PFC) stage and a follow-on DC-DC stage, with bulky ‘DC-link’ buffering capacitors. The resulting systems are large, lossy, and expensive. Bi-directional GaNFast consolidates the two stages into a single, high-speed, high-efficiency stage and in the process, eliminates the bulky capacitors and input inductors – the ultimate solution in EV OBCs.

A leading EV and solar micro-inverter manufacturer have already begun their implementation of single-stage BDS converters to improve efficiency, size, and cost in their systems. GaNFast-enabled single-stage converters achieve up to 10% cost savings, 20% energy savings, and up to 50% size reductions.

The ultimate power semiconductor switch (transistor) can block voltage and allow current flow in two directions, with the highest efficiency. Navitas’ leadership in GaN innovation has delivered this landmark – the bi-directional GaNFast power IC.

Previously, two discrete, ‘back-to-back’ single switches had to be used, but new bi-directional GaNFast ICs are leading-edge, single-chip designs (monolithic integration) with a merged drain structure, two gate controls, and a patented, integrated, active substrate clamp. One high-speed, high-efficiency bi-directional GaNFast IC replaces up to 4 older switches, increasing system performance while reducing component count, PCB area, and system costs.

The initial 650 V bi-directional GaNFast ICs include NV6427 (100 mΩ RSS(ON) typ.) and NV6428 (50 mΩ RSS(ON) typ) in thermally enhanced, top-side-cooled TOLT-16L (Transistor Outline Leaded Topside-cooled) packaging. The product family will be extended into lower RSS(ON) offerings in the future.

The new, high-speed IsoFast devices are galvanically isolated, high-speed drivers optimized to drive bi-directional GaN. With 4x higher transient immunity than existing drivers (up to 200 V/ns) and no external negative bias supply needed, they deliver reliable, fast, accurate power control in high-voltage systems. Initial parts are the NV1702 (dual, independent-channel, digital, isolated bi-directional GaN gate driver) and NV1701 (half-bridge GaN digital isolator) in SOIC-16N and SOIC-14W packages.

“These ICs are a truly game-changing and disruptive technology both at the semiconductor and at the system level. They not only deliver improved efficiency, power density, simplicity, and system costs but will also transform multiple multi-billion-dollar markets in the most sustainable way possible.” Gene Sheridan, CEO and co-founder of Navitas commented. “The future of our electrified planet is bi-directional energy flow. From all renewable energy sources, the power grid, and all electrified applications, such as ESS, solar and EVs, energy should flow efficiently & bi-directionally, creating a critical new currency for our future planet. Single-stage BDS converters are the key for this inflection”.

Bi-directional GaNFast ICs (NV6427 and NV6428) are fully qualified and immediately available in mass-production quantities. IsoFast (NV1701 and NV1702) samples are available now to qualified customers.

Single-stage evaluation boards and user guide showcasing both IsoFast and bi-directional GaNFast ICs are available for qualified customers.

Tags: GaNGate-DriversICsNavitas SemiconductorSiC
Editorial

Editorial

Join Our Newsletter

* indicates required
Electronics Era

Electronics Era, India's no.1 growing B2B news forum on Electronics and Cutting Edge Technology is exploring the editorial opportunity for organizations working in the Electronics Manufacturing Services(EMS) Industry.

Follow Us

Browse by Category

  • 5G testing
  • 5G/6G
  • AC-DC/DC-DC Converters
  • ADAS
  • Aerospace & Defence
  • AI/ML
  • Automation
  • AUTOMOTIVE ELECTRONICS
  • Big Data Analytics
  • Blockchain
  • Cloud Computing
  • Component
  • Connected Cars
  • Data Center
  • Editor's Desk
  • EE-Tech Talk
  • Electronics Components
  • Embedded
  • EVs
  • Future Tech
  • HEVs
  • Industry 4.0
  • Industry News
  • IoT-Internet of Things
  • LED & Lighting
  • LEDs
  • Manufacturing
  • Market Research
  • Medical Electronics
  • Mosfets
  • News
  • Oscilloscopes
  • Policy
  • Power Electronics
  • Product News
  • RENEWABLES
  • RF & Wireless
  • Robotic
  • SDN & NFV
  • Security
  • Semiconductor
  • Sensor
  • Smart Machine
  • SMT/PCB/EMS
  • Sustainability
  • T & M
  • Tech Article
  • Tech Blog
  • TECH ROOM
  • Telecom
  • Uncategorized
  • VR / AR
  • White Papers

Recent News

Allied Market Research

Software Defined Vehicles: Future of Mobility and Transportation

May 31, 2025
Solitaire

Solitaire Launches PTK-208 PTZ Camera to Elevate Video Conferencing

May 31, 2025
  • About Us
  • Advertise with Us
  • Contact Us

© 2022-23 TechZone Print Media | All Rights Reserved

No Result
View All Result
  • News
    • Industry News
    • Product News
  • TECH ROOM
    • Sensor
    • VR / AR
    • Embedded
    • Medical Electronics
    • Industry 4.0
    • Robotic
    • Automation
    • Smart Machine
    • Component
    • Manufacturing
    • Aerospace & Defence
    • Security
    • Policy
  • Semiconductor
    • AUTOMOTIVE ELECTRONICS
      • EVs
      • HEVs
      • ADAS
      • Connected Cars
    • IoT-Internet of Things
      • Development Kit
      • IoT Design
    • Power Electronics
      • AC-DC/DC-DC Converters
      • Mosfets
      • IGBTs
      • LEDs
  • T & M
    • 5G testing
    • Oscilloscopes
    • SDN & NFV
    • RF & Wireless
  • AI/ML
  • Telecom
    • 5G/6G
  • RENEWABLES
    • Sustainability
  • Future Tech
    • Data Center
    • Cloud Computing
    • Big Data Analytics
  • Webinars
  • Editor’s Pick
    • Tech Article
    • Tech Blog
    • White Papers
    • EE-Tech Talk
    • Market Research
  • EE Awards
    • EE Awards 2025
    • EE Awards 2024
  • MORE
    • E-Mag
    • Events
    • Subscription
    • Contact Us

© 2022-23 TechZone Print Media | All Rights Reserved

Advertisement
Advertisement